

Introduction

The c-rbtree project provides a Red-Black-Tree API, that is fully
implemented in ISO-C11 and has no external dependencies. Furthermore, tree
traversal, memory allocations, and key comparisons are completely controlled by
the API user. The implementation only provides the RB-Tree specific rebalancing
and coloring.

API

The c-rbtree.h header exposes the full API of the c-rbtree library. It
provides access to the Red-Black Tree structure as well as helper functions
to perform standard tree operations.

A tree is represented by the CRBTree structure. It contains a
single field, which is a pointer to the root node. If NULL, the tree is
empty. If non-NULL, there is at least a single element in the tree.

Each node of the tree is represented by the CRBNode structure.
It has three fields. The left and right members can be accessed by
the API user directly to traverse the tree. The third member is a
combination of the parent pointer and a set of flags. API users are required
to embed the CRBNode object into their own objects and then use
offsetof() (i.e., container_of() and friends) to turn
CRBNode pointers into pointers to their own enclosing type:

Tree Structure

The tree structure of c-rbtree is directly exposed in its API. Callers are
allowed to access the node and tree structures directly to traverse the
tree. Tree modifications, however, should be performed via the functions
provided by the library.

	
struct CRBNode

	Node of a Red-Black Tree

Each node in an RB-Tree must embed a CRBNode object. This object
contains pointers to its left and right child, which can be freely accessed
by the API user at any time. They are NULL, if the node does not have a
left/right child.

The __parent_and_flags field must never be accessed directly. It encodes
the pointer to the parent node, and the color of the node. Use the accessor
functions instead.

There is no reason to initialize a CRBNode object before linking
it. However, if you need a boolean state that tells you whether the node is
linked or not, you should initialize the node via c_rbnode_init()
or C_RBNODE_INIT().

	
union [anonymous]

	Anonymous union for alignment guarantees

	
unsigned long __parent_and_flags

	Internal state encoding the parent pointer and state

	
CRBNode *left

	Left child, or NULL

	
CRBNode *right

	Right child, or NULL

	
C_RBNODE_INIT(_var)

	Initialize RBNode Object

	Parameters

	
	_var – Backpointer to the variable

Set the contents of the specified node to its unlinked, unused state, ready
to be linked into a tree.

	Returns

	Evaluates to the initializer for _var.

	
struct CRBTree

	Red-Black Tree Top-Level Structure

Each Red-Black Tree is rooted in an CRBTree object. This object contains a
pointer to the root node of the tree. The API user is free to access the
root member at any time, and use it to traverse the tree.

To initialize an RB-Tree, set it to NULL / all zero.

	
union [anonymous]

	Anonymous union for alignment guarantees

	
CRBNode *root

	Pointer to the root node, or NULL

	
C_RBTREE_INIT

	Initialize RBTree Object

Set the contents of the specified tree to its pristine, empty state.

	Returns

	Evaluates to the initializer for a CRBTree object.

	
void c_rbnode_init(CRBNode *n)

	Mark a node as unlinked

	Parameters

	
	n – Node to operate on

This marks the node n as unlinked. The node will be set to a valid state
that can never happen if the node is linked in a tree. Furthermore, this
state is fully known to the implementation, and as such handled gracefully
in all cases.

You are NOT required to call this on your node. c_rbtree_add()
ca handle uninitialized nodes just fine. However, calling this allows to use
c_rbnode_is_linked() to check for the state of a node.
Furthermore, iterators and accessors can be called on initialized (yet
unlinked) nodes.

Use the C_RBNODE_INIT macro if you want to initialize static
variables.

	
c_rbnode_entry(_what, _t, _m)

	Get parent container of tree node

	Parameters

	
	_what – Tree node, or NULL

	_t – Type of parent container

	_m – Member name of tree node in _t

If the tree node _what is embedded into a surrounding structure, this
will turn the tree node pointer _what into a pointer to the parent
container (using offsetof(3), or sometimes called
container_of(3)).

If _what is NULL, this will also return NULL.

	Returns

	Pointer to parent container, or NULL.

	
CRBNode *c_rbnode_parent(CRBNode *n)

	Return parent pointer

	Parameters

	
	n – Node to access

This returns a pointer to the parent of the given node n. If n does
not have a parent, NULL is returned. If n is not linked, n itself is
returned.

You should not call this on unlinked or uninitialized nodes! If you do, you
better know its semantics.

	Returns

	Pointer to parent.

	
_Bool c_rbnode_is_linked(CRBNode *n)

	Check whether a node is linked

	Parameters

	
	n – Node to check, or NULL

This checks whether the passed node is linked. If you pass NULL, or if the
node is not linked into a tree, this will return false. Otherwise, this
returns true.

Note that you must have either linked the node or initialized it, before
calling this function. Never call this function on uninitialized nodes.
Furthermore, removing a node via c_rbnode_unlink_stale() does NOT
mark the node as unlinked. You have to call c_rbnode_init()
yourself after removal, or use c_rbnode_unlink().

	Returns

	true if the node is linked, false if not.

	
void c_rbnode_unlink(CRBNode *n)

	Safely remove node from tree and reinitialize it

	Parameters

	
	n – Node to remove, or NULL

This is almost the same as c_rbnode_unlink_stale(), but extends it
slightly, to be more convenient to use in many cases:

	If n is unlinked or NULL, this is a no-op.

	n is reinitialized after being removed.

	
void c_rbtree_init(CRBTree *t)

	Initialize a new RB-Tree

	Parameters

	
	t – Tree to operate on

This initializes a new, empty RB-Tree. An RB-Tree must be initialized before
any other functions are called on it. Alternatively, you can zero its memory
or assign C_RBTREE_INIT.

	
_Bool c_rbtree_is_empty(CRBTree *t)

	Check whether an RB-tree is empty

	Parameters

	
	t – Tree to operate on

This checks whether the passed RB-Tree is empty.

	Returns

	True if tree is empty, false otherwise.

Search

While the API supports direct traversal via the open-coded structures, it
can be cumbersome to use at times. If you, instead, provide a callback to
compare entries in the tree, you can use the following helpers to search the
tree for specific entries, or slots to insert new entries.

	
type CRBCompareFunc

	Function type to compare a node to a key

If you use the tree-traversal helpers (which are optional), you need to
provide this callback so they can compare nodes in a tree to the key you
look for.

The tree is provided as optional context t to this callback. The key you
look for is provided as k, the current node that should be compared to
is provided as n. This function should work like strcmp(), that is,
return <0 if key orders before n, 0 if both compare equal, and >0 if
it orders after n.

	
CRBNode *c_rbtree_find_node(CRBTree *t, CRBCompareFunc f, const void *k)

	Find node

	Parameters

	
	t – Tree to search through

	f – Comparison function

	k – Key to search for

This searches through t for a node that compares equal to k. The
function f must be provided by the caller, which is used to compare
nodes to k. See the documentation of CRBCompareFunc for
details.

If there are multiple entries that compare equal to k, this will return
a pseudo-randomly picked node. If you need stable lookup functions for trees
where duplicate entries are allowed, you better code your own lookup.

	Returns

	Pointer to matching node, or NULL.

	
c_rbtree_find_entry(_t, _f, _k, _s, _m)

	Find entry

	Parameters

	
	_t – Tree to search through

	_f – Comparison function

	_k – Key to search for

	_s – Type of the structure that embeds the nodes

	_m – Name of the node-member in type @_t

This is very similar to c_rbtree_find_node(), but instead of
returning a pointer to the CRBNode, it returns a pointer to the
surrounding object. This object must embed the CRBNode object.
The type of the surrounding object must be given as _s, and the name of
the embedded CRBNode member as _m.

See c_rbtree_find_node() and c_rbnode_entry() for more
details.

	Returns

	Pointer to found entry, NULL if not found.

	
CRBNode **c_rbtree_find_slot(CRBTree *t, CRBCompareFunc f, const void *k, CRBNode **p)

	Find slot to insert new node

	Parameters

	
	t – Tree to search through

	f – Comparison function

	k – Key to search for

	p – Output storage for parent pointer

This searches through t just like c_rbtree_find_node() does.
However, instead of returning a pointer to a node that compares equal to
k, this searches for a slot to insert a node with key k. A pointer
to the slot is returned, and a pointer to the parent of the slot is stored
in p. Both can be passed directly to c_rbtree_add(), together
with your node to insert.

If there already is a node in the tree, that compares equal to k, this
will return NULL and store the conflicting node in p. In all other
cases, this will return a pointer (non-NULL) to the empty slot to insert the
node at. p will point to the parent node of that slot.

If you want trees that allow duplicate nodes, you better code your own
insertion function.

	Returns

	Pointer to slot to insert node, or NULL on conflicts.

Iterators

The c_rbtree_for_each*() macros provide simple for-loop wrappers to
iterate an RB-Tree. They come in a set of flavours:

	entry

	This combines c_rbnode_entry() with the loop iterator, so
the iterator always has the type of the surrounding object, rather
than CRBNode.

	safe

	The loop iterator always keeps track of the next element to
visit. This means, you can safely modify the current element,
while retaining loop-integrity.
You still must not touch any other entry of the tree. Otherwise,
the loop-iterator will be corrupted. Also remember to only
modify the tree in a way compatible with your iterator-order.
That is, if you use in-order iteration (default), you can unlink
your current object, including re-balancing the tree. However,
if you use post-order, you must not trigger a tree rebalance
operation, since it is not an invariant of post-order iteration.

	postorder

	Rather than the default in-order iteration, this iterates
the tree in post-order.

	unlink

	This unlinks the current element from the tree before the loop
code is run. Note that the tree is not rebalanced. That is,
you must never break out of the loop. If you do so, the tree
is corrupted.

Traversal

If you prefer open-coding the tree traversal over the built-in iterators,
c-rbtree provides a set of helpers to find starting position and end nodes
for different kind of tree traversals.

	
CRBNode *c_rbnode_leftmost(CRBNode *n)

	Return leftmost child

	Parameters

	
	n – Current node, or NULL

This returns the leftmost child of n. If n is NULL, this will return
NULL. In all other cases, this function returns a valid pointer. That is, if
n does not have any left children, this returns n.

Worst case runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to leftmost child, or NULL.

	
CRBNode *c_rbnode_rightmost(CRBNode *n)

	Return rightmost child

	Parameters

	
	n – Current node, or NULL

This returns the rightmost child of n. If n is NULL, this will
return NULL. In all other cases, this function returns a valid pointer. That
is, if n does not have any right children, this returns n.

Worst case runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to rightmost child, or NULL.

	
CRBNode *c_rbnode_leftdeepest(CRBNode *n)

	Return left-deepest child

	Parameters

	
	n – Current node, or NULL

This returns the left-deepest child of n. If n is NULL, this will
return NULL. In all other cases, this function returns a valid pointer. That
is, if n does not have any children, this returns n.

The left-deepest child is defined as the deepest child without any left
(grand-…)siblings.

Worst case runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to left-deepest child, or NULL.

	
CRBNode *c_rbnode_rightdeepest(CRBNode *n)

	Return right-deepest child

	Parameters

	
	n – Current node, or NULL

This returns the right-deepest child of n. If n is NULL, this will
return NULL. In all other cases, this function returns a valid pointer. That
is, if n does not have any children, this returns n.

The right-deepest child is defined as the deepest child without any right
(grand-…)siblings.

Worst case runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to right-deepest child, or NULL.

	
CRBNode *c_rbnode_next(CRBNode *n)

	Return next node

	Parameters

	
	n – Current node, or NULL

An RB-Tree always defines a linear order of its elements. This function
returns the logically next node to n. If n is NULL, the last node or
unlinked, this returns NULL.

Worst case runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to next node, or NULL.

	
CRBNode *c_rbnode_prev(CRBNode *n)

	Return previous node

	Parameters

	
	n – Current node, or NULL

An RB-Tree always defines a linear order of its elements. This function
returns the logically previous node to n. If n is NULL, the first
node or unlinked, this returns NULL.

Worst case runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to previous node, or NULL.

	
CRBNode *c_rbnode_next_postorder(CRBNode *n)

	Return next node in post-order

	Parameters

	
	n – Current node, or NULL

This returns the next node to n, based on a left-to-right post-order
traversal. If n is NULL, the root node, or unlinked, this returns NULL.

This implements a left-to-right post-order traversal: First visit the left
child of a node, then the right, and lastly the node itself. Children are
traversed recursively.

This function can be used to implement a left-to-right post-order traversal:

for (n = c_rbtree_first_postorder(t); n; n = c_rbnode_next_postorder(n))
 visit(n);

Worst case runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to next node, or NULL.

	
CRBNode *c_rbnode_prev_postorder(CRBNode *n)

	Return previous node in post-order

	Parameters

	
	n – Current node, or NULL

This returns the previous node to n, based on a left-to-right post-order
traversal. That is, it is the inverse operation to
c_rbnode_next_postorder(). If n is NULL, the left-deepest
node, or unlinked, this returns NULL.

This function returns the logical previous node in a directed post-order
traversal. That is, it effectively does a pre-order traversal (since a
reverse post-order traversal is a pre-order traversal). This function does
NOT do a right-to-left post-order traversal! In other words, the following
invariant is guaranteed, if c_rbnode_next_postorder(n) is non-NULL:

n == c_rbnode_prev_postorder(c_rbnode_next_postorder(n))

This function can be used to implement a right-to-left pre-order traversal,
using the fact that a reverse post-order traversal is also a valid pre-order
traversal:

for (n = c_rbtree_last_postorder(t); n; n = c_rbnode_prev_postorder(n))
 visit(n);

This would effectively perform a right-to-left pre-order traversal: first
visit a parent, then its right child, then its left child. Both children are
traversed recursively.

Worst case runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to previous node in post-order, or NULL.

	
CRBNode *c_rbtree_first(CRBTree *t)

	Return first node

	Parameters

	
	t – Tree to operate on

An RB-Tree always defines a linear order of its elements. This function
returns the logically first node in t. If t is empty, NULL is
returned.

Fixed runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to first node, or NULL.

	
CRBNode *c_rbtree_last(CRBTree *t)

	Return last node

	Parameters

	
	t – Tree to operate on

An RB-Tree always defines a linear order of its elements. This function
returns the logically last node in t. If t is empty, NULL is
returned.

Fixed runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to last node, or NULL.

	
CRBNode *c_rbtree_first_postorder(CRBTree *t)

	Return first node in post-order

	Parameters

	
	t – Tree to operate on

This returns the first node of a left-to-right post-order traversal. That
is, it returns the left-deepest leaf. If the tree is empty, this returns
NULL.

This can also be interpreted as the last node of a right-to-left pre-order
traversal.

Fixed runtime (n: number of elements in tree): O(log(n))

	Returns

	Pointer to first node in post-order, or NULL.

	
CRBNode *c_rbtree_last_postorder(CRBTree *t)

	Return last node in post-order

	Parameters

	
	t – Tree to operate on

This returns the last node of a left-to-right post-order traversal. That is,
it always returns the root node, or NULL if the tree is empty.

This can also be interpreted as the first node of a right-to-left pre-order
traversal.

Fixed runtime (n: number of elements in tree): O(1)

	Returns

	Pointer to last node in post-order, or NULL.

Tree Modification

Insertion into and removal from an RB-Tree require rebalancing to make sure
the tree stays balanced. The following functions ensure the tree integrity
is kept.

	
void c_rbtree_move(CRBTree *to, CRBTree *from)

	Move tree

	Parameters

	
	to – Destination tree

	from – Source tree

This imports the entire tree from from into to. to must be
empty! from will be empty afterwards.

Note that this operates in O(1) time. Only the root-entry is updated to
point to the new tree-root.

	
void c_rbnode_link(CRBNode *p, CRBNode **l, CRBNode *n)

	Link node into tree

	Parameters

	
	p – Parent node to link under

	l – Left/right slot of p to link at

	n – Node to add

This links n into an tree underneath another node. The caller must
provide the exact spot where to link the node. That is, the caller must
traverse the tree based on their search order. Once they hit a leaf where to
insert the node, call this function to link it and rebalance the tree.

For this to work, the caller must provide a pointer to the parent node. If
the tree might be empty, you must resort to c_rbtree_add().

In most cases you are better off using c_rbtree_add(). See there
for details how tree-insertion works.

	
void c_rbtree_add(CRBTree *t, CRBNode *p, CRBNode **l, CRBNode *n)

	Add node to tree

	Parameters

	
	t – Tree to operate one

	p – Parent node to link under, or NULL

	l – Left/right slot of @p (or root) to link at

	n – Node to add

This links @n into the tree given as t. The caller must provide the
exact spot where to link the node. That is, the caller must traverse the
tree based on their search order. Once they hit a leaf where to insert the
node, call this function to link it and rebalance the tree.

A typical insertion would look like this (t is your tree, n is your
node):

CRBNode **i, *p;

i = &t->root;
p = NULL;
while (*i) {
 p = *i;
 if (compare(n, *i) < 0)
 i = &(*i)->left;
 else
 i = &(*i)->right;
}

c_rbtree_add(t, p, i, n);

Once the node is linked into the tree, a simple lookup on the same tree can
be coded like this:

CRBNode *i;

i = t->root;
while (i) {
 int v = compare(n, i);
 if (v < 0)
 i = (*i)->left;
 else if (v > 0)
 i = (*i)->right;
 else
 break;
}

When you add nodes to a tree, the memory contents of the node do not matter.
That is, there is no need to initialize the node via
c_rbnode_init().
However, if you relink nodes multiple times during their lifetime, it is
usually very convenient to use c_rbnode_init() and
c_rbnode_unlink() (rather than c_rbnode_unlink_stale()).
In those cases, you should validate that a node is unlinked before you call
c_rbtree_add().

	
void c_rbnode_unlink_stale(CRBNode *n)

	Remove node from tree

	Parameters

	
	n – Node to remove

This removes the given node from its tree. Once unlinked, the tree is
rebalanced.

This does NOT reset n to being unlinked. If you need this, use
c_rbtree_unlink().

Index

 C

C

 	
 	c_rbnode_entry (C macro)

 	c_rbnode_init (C function)

 	C_RBNODE_INIT (C macro)

 	c_rbnode_is_linked (C function)

 	c_rbnode_leftdeepest (C function)

 	c_rbnode_leftmost (C function)

 	c_rbnode_link (C function)

 	c_rbnode_next (C function)

 	c_rbnode_next_postorder (C function)

 	c_rbnode_parent (C function)

 	c_rbnode_prev (C function)

 	c_rbnode_prev_postorder (C function)

 	c_rbnode_rightdeepest (C function)

 	c_rbnode_rightmost (C function)

 	c_rbnode_unlink (C function)

 	c_rbnode_unlink_stale (C function)

 	c_rbtree_add (C function)

 	c_rbtree_find_entry (C macro)

 	
 	c_rbtree_find_node (C function)

 	c_rbtree_find_slot (C function)

 	c_rbtree_first (C function)

 	c_rbtree_first_postorder (C function)

 	c_rbtree_init (C function)

 	C_RBTREE_INIT (C macro)

 	c_rbtree_is_empty (C function)

 	c_rbtree_last (C function)

 	c_rbtree_last_postorder (C function)

 	c_rbtree_move (C function)

 	CRBCompareFunc (C type)

 	CRBNode (C struct)

 	CRBNode.[anonymous] (C union)

 	CRBNode.[anonymous].__parent_and_flags (C member)

 	CRBNode.left (C member)

 	CRBNode.right (C member)

 	CRBTree (C struct)

 	CRBTree.[anonymous] (C union)

 	CRBTree.[anonymous].root (C member)

 nav.xhtml

 Table of Contents

 		
 Introduction

_static/plus.png

_static/file.png

_static/minus.png

